Arabic Sign Language Recognition Using Spatio-Temporal Local Binary Patterns and Support Vector Machine
نویسندگان
چکیده
One of the most common ways of communication in deaf community is sign language recognition. This paper focuses on the problem of recognizing Arabic sign language at word level used by the community of deaf people. The proposed system is based on the combination of Spatio-Temporal local binary pattern (STLBP) feature extraction technique and support vector machine classifier. The system takes a sequence of sign images or a video stream as input, and localize head and hands using IHLS color space and random forest classifier. A feature vector is extracted from the segmented images using local binary pattern on three orthogonal planes (LBP-TOP) algorithm which jointly extracts the appearance and motion features of gestures. The obtained feature vector is classified using support vector machine classifier. The proposed method does not require that signers wear gloves or any other marker devices. Experimental results using Arabic sign language (ArSL) database contains 23 signs (words) recorded by 3 signers show the effectiveness of the proposed method. For signer dependent test, the proposed system based on LBP-TOP and SVM achieves an overall recognition rate reaching up to 99.5%.
منابع مشابه
Vision Based Hand Gesture Recognition for Indian Sign Languages Using Local Binary Patterns with Support Vector Machine Classifier
Sign Language is a language which uses visually transmitted sign patterns to convey meaning by simultaneously combining hand shapes, orientation and movement of the hands, arms or body, and facial expressions to fluently express one's thoughts / communicate with others and is commonly used by the physically impaired people who cannot speak or hear. Automatic Sign Language system requires fast a...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملFacial expression recognition based on Local Binary Patterns
Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملThermal spatio-temporal data for stress recognition
Stress is a serious concern facing our world today, motivating the development of a better objective understanding through the use of non-intrusive means for stress recognition by reducing restrictions to natural human behavior. As an initial step in computer vision-based stress detection, this paper proposes a temporal thermal spectrum (TS) and visible spectrum (VS) video database ANUStressDB ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014